A Compact Representation for Topological Decompositions of Non-manifold Shapes

نویسندگان

  • David Canino
  • Leila De Floriani
چکیده

Simplicial complexes are extensively used for discretizing digital shapes in several applications. A structural description of a non-manifold shape can be obtained by decomposing the input shape into a collection of meaningful components with a simpler topology. Here, we consider a unique and dimension-independent decomposition of a non-manifold shape into nearly manifold components, known as the Manifold-Connected (MC-) decomposition. We present the Compact Manifold-Connected (MC-) graph, an efficient graph-based representation for the MC-decomposition, which can be combined with any topological data structure for encoding the underlying components. We present the main properties of this representation as well as algorithms for its generation. We also show that this representation is more compact than several topological data structures, which do not explicitly describe the non-manifold structure of a shape.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Decomposition-based Approach to Modeling and Understanding Arbitrary Shapes

Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of components with a simpler topology. Here, we consider a representation for arbitrary shapes, that we call ManifoldConnected Decomposition (MC-decomposition), which is based on a uni...

متن کامل

Representations of Geometry for Computer Graphics

Geometric modelling is central to many applications. Representation schemes that are specialized for a particular application may impose topological and geometric limitations on the domain and thus considerably restrict future extensions. Selective Geometric Complexes (SGCs) provide a practical yet general framework for representing general objects of mixed dimensionality having internal struct...

متن کامل

Computing and Visualizing a Graph-Based Decomposition for Non-manifold Shapes

Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of components with a simpler topology. Here, we consider a decomposition of a non-manifold shape into components which are almost manifolds, and we present a novel graph representation...

متن کامل

Hodge structures on cohomology algebras and geometry

It is well-known (see eg [22]) that the topology of a compact Kähler manifold X is strongly restricted by Hodge theory. In fact, Hodge theory provides two sets of data on the cohomology of a compact Kähler manifold. The first data are the Hodge decompositions on the cohomology spaces H(X,C) (see (1.1) where V = H(X,Q)); they depend only on the complex structure. The second data, known as the Le...

متن کامل

Consistent Manifold Representation for Topological Data Analysis

For data sampled from an arbitrary density on a manifold embedded in Euclidean space, we introduce the Continuous k-Nearest Neighbors (CkNN) graph construction. We prove that CkNN is the unique unweighted construction that is consistent with the underlying manifold topology in the limit of large data, for compact Riemannian manifolds and a large class of non-compact manifolds. In contrast to pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013